Exercise 27

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow 0}|x|=0
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-0|<\delta \quad \text { then } \quad||x|-0|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x|$.

$$
\begin{gathered}
||x|-0|<\varepsilon \\
||x||<\varepsilon \\
|x|<\varepsilon
\end{gathered}
$$

Choose $\delta=\varepsilon$. Now, assuming that $|x|<\delta$,

$$
=\varepsilon
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 0}|x|=0
$$

